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ABSTRACT

We show that the Belinfante-Swihart (BS) theory can be

reformulated in a representation in which uncharged matter

responds to gravity in the same way as in metric theories.

The BS gravitationally modified Maxwell equations can also

be put into metric form to first order in the deviations of

the physical metric from flat space, but not to second order;

consequently the theory is nonmetric except in first order.

We also show that the theory violates the high precision

Eitvos-Dicke experiment, but cannot be ruled out by the

gravitational precession of gyroscopes.
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I. INTRODUCTION AND SUMMARY

This paper analyzes the most complete and extensively developed non-

metric theory that exists: the 1957 theory of F. J. Belinfante and

J. C. Swihart. '2'3 Belinfante and Swihart constructed their theory as a

Lorentz symmetric4 linear field theory which would be easily quantized.

However, as we shall show, in terms of measurable quantities the theory

has all the nonlinearities of typical "curved-spacetime" theories. More-

over it is nearly a metric4 theory: We construct a new mathematical repre-

sentation which has metric form to first order in deviations of the physical

metric from flatness, but does not have metric form to higher orders.

Section II gives a brief summary of the original BS representation.

Included are discussions of nonlinearities and the behavior of rods and

clocks. Section III presents our new mathematical representation of the

theory. Section IV gives a prescription for obtaining the post-Newtonian

Limit5 '6 of the theory and Sec. V considers various experimental tests.

Contrary to previous calculations7 it is found that both the geodetic and

the Lens-Thirringprecessions of gyroscopes cannot distinguish BS from

General Relativity (for a particular choice of adjustable parameters).

'9
However, using results of another paper, we show that the failure of the

theory to be metric at second order causes a violation of the Eotv'os-Dicke

(ED)10' 11 experimental results. Our calculations confirm the Belinfante-

Swihart conclusion that their theory agrees with the three classical tests

of gravitation theories, (perihelion shift of Mercury, bending of light by

the sun, and redshift of light), and also agrees with the weak equivalence

principle4 (WEP) to first order.
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II. THE BELINFANTE-SWIHART REPRESENTATION OF THEIR THEORY

a. Lagrangian and Equations of Motion

The original representation of the BS theory is Lagrangian based but

is not in generally covariant form. In this section we generalize, in a

trivial manner, the original representation so that it is generally covari-

ant. The dynamical equations are obtained by extremization of the following

action:

I= J d x + I d x + JI Id x (1)

where

Q - (16n)-
1f M1" (ah ,p(ahh1 + fha /2 (2)

G' ar -mb 
+

( dx C aT ZM A l4mAbA +( +e
A
A) d ix z A(;A))dXA-fM A A 7 EA~A AA _

+ (4)-l (I HV"H - HvA I)(v )1/2 (3)

=1 Tvh ·+ f KmAbA h '4(x - ZA(%A))dA (4)
I 2 Pv

T4v- (4n)
-

1 (H? HV oVHOH:o : )(- )l/2 + £ I aAI"AA8(x A A(?A))dhA (5a)

b
A

= a . (Sb)

Equations (1-5) describe the interactions of a collection of charged particles

(labeled by A) with the electromagnetic and gravitational fields. Conven-

tions and definitions for the above are the following:

(i) We use units such that c = G = 1.

(ii) noC is a Riemann flat background metric (absolute gravitational

field ). In some coordinate system it therefore takes on

Minkowski values, noi = diag. (- 1, 1, 1, 1). All tensorial indices

2



occurring in Eqs. (1-5) are raised and lowered with nRo·

(iii) Greek and Latin indices run through 0-3, 1-3, respectively.

(iv) a, f, K are adjustable parameters.

(v) h h = h is a symmetric second rank dynamical gravitational

field.4

(vi) The world line of particle A is parametrized by an arbitrary,

monotonic parameter hA which varies from - o to + o. Particle

A is described by its coordinate zAgP and its "velocity and

momentum variables" aA and fAl, which are all functions of hA.

(vii) The electromagnetic field is described by the tensor fields

A and H = - H
I PV VPI

(viii) Tv is a "stress-energy tensor" for particles and electro-

magnetic fields. (The bar above is used to distinguish it

from a different "stress-energy tensor" definded in Sec. IV.)

(ix) Slashes denote covariant derivatives with respect to the flat

background metric noI.

(x) r - determinant of nob.

Equations (Sa) and (5b) are decomposition equations
4

for TV and bA. The

dynamical variables which one varies independently in the action are h (x),

zA (AA), aA (AA), nAg(AA ) , A (x), and H (x). Variation of the matter

variables yields the following dynamical lawsl2

maP(l - Kh) = b(Ti - 1 h ITv) [BS,I,(24)] (6)

dz A/dA = aA 21 hv"(ZA)aAV [BS,I, (30)] (7)

dA/ = A -A h ()

F AV1 ~ - A ~V H ~(l - ~1 h) + H h H h [BSII,(ll)] (')
FPV VI Av{ - A{ vI : Pv(1- 2 PAv - HhP
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H1 vI = 4A £ eA I (dZA /dA) 8 (X - EA
)
dAA(- n) 1/2 [BSII,(10)] (9)

A

V

dTiA dz 1
A =eAFv dA + aA nAahPalF + kmAbAh [BS,II,(5)] (10)

where h _ ha

Variation of h yields

a[ho + fi 1o
F

Th = -Cm -b 8(Kx £ d f mAbAA A)(11)

Here we have used the symbol oh -m COhvl

b. Nonlinearities in the Theory

Linear gravitational field equations do not preclude a nonlinear form

for the response of particles to gravity. The BS theory is an example:

Eqs. (16) and (17) endow the canonical variables aA~ and 1A1 with gravita-

tional contributions. Consequently the equation of motion for a particle,

Eq. (10), is nonlinear in the gravitational field h . Indeed, although

the BS theory is often called a "linear" theory, its "linear" first-order

matter Lagrangian produces qualitatively many of the nonlinear effects of

General Relativity (GRT) for example (see Secs. III and IV). Hence one

should be cautious in the labelling of theories as "linear" or "nonlinear"

on the mere basis of the linear forms of their gravitational equations.

c. Behavior of Rods and Clocks

In the third paper of their series
3

Belinfante and Swihart quantize

the theory and obtain a gravitationally modified Dirac theory. We remind

the reader that all nonmetric theories must exhibit explicitly the manner

in which all the laws of physics are changed in the presence of gravity.
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Belinfante and Swihart find that, in the case of a static spherically

symmetric (SSS) gravitational source, the standard solutions to the unmodi-

fied Dirac equation are related to those in the presence of gravity in the

following way:

c%(1o, t) = Np(x,t) (12)

x = C x [BS,III,(78)] (13)
-o

to = (1 - U)t (14)

N C (1 - U/2a) (15)

Here the subscripted quantities are those in the absence of gravity, cp is

the electron wave function, U is the Newtonian gravitational potential for

an SSS source and "a" is the previously mentioned adjustable parameter.

The coordinate system is one in which iC4 = diag. (- 1, 1, 1, 1). The

energy eigenvalues, i.e., E in p(x,t) = p(x) exp(- iEt/-), are shifted in

the presence of gravity:

E = (1 + U)E [BS, II,(82)] '. (16)

- a result following essentially from Eq. (14). It is Eq. (16) which pro-

duces qualitatively Fhe correct redshift. Equations (12) and (13) also

indicate the effect of gravity on the coordinate sizes of atoms. Consider

the expectation value of the coordinate size of an atom:

<r> = S Ip(x,t)l 2 r d 3x (17)

Using Eqs. (12) and (13) we obtain

<r> = NP1(Xo, t
o
) 12 CrC3dx = C<r>

11-U <ro> 1 + U(I a1 1 ) <ro> (18)
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According to Eq. (16), the coordinate ticking rate of an atomic clock

decreases in a gravitational field: w = (1 - u)wo . According to Eq. (18)

the coordinate size of a rod made of atoms increases in a gravitational

f1-1 1 1
field: I = + U.( a 1) . Since a to agree with the light bend-

ing experiment (see later sections) the above results are the same, to

first order in U, as one obtains in GRT, using an "isotropic, post-Newtonian"

coordinate system.5

III. ATTEMPTS TO PUT THE THEORY INTO METRIC FORM

The BS theory is a Lagrangian-based, relativistic theory of gravity.4

Therefore, according to a theorem proved in Ref. 4, it is a metric theory

if and only if the "nongravitational part" of its Lagrangian,

+ ;
ZNG - ZM + 5

can be put into universally coupled form. Let us try to achieve universal

coupling by a change of variables, i.e., by introducing a new mathematical

representation of the theory.

;a. Particle Part of Lagrangian

Begin with the terms in 'NG that refer only to particles and define

the following tensors:

A~ -- 5v - 1 h P (19)v v 2 v

8 _ ,i.e., v-- = ¶ . (20)

Then, from Eq. (7), obtain the relation

a = AVdzP/d . (21)
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Equation (21), which is obtained after variation of the Lagrangian, suggests

that one define a new variable v 1 to replace ad in the Lagrangian:

a -A v . (22)

Then, the relation -V = dz4/dA will presumably turn out to be an Euler-

Lagrange equation. Using Eqs. (19)-(21), bring the particle portion of

the Lagrangian into the form

Ipart.8 [I e dhx + f 4 d x] art (23)

= f -(1 - Kh)mAbA + eAAp dA + nAP(dA - aA 2 hvaA d A

A AA A

In obtaining Eq. (24) from Eq. (23) we have performed the integrations over

d x and thus all of the spacetime functions should be evaluated at the

particle position ZA 4

Eq. (24) takes the universally coupled form, with gC4 being the only gravi-

tational field occurring in Ipart . Variation of II then yields the desired

relation

= dzP/d& . (26)

To make our results look simpler, we expliticly introduce Eq. (26)

into Eq. (24), thus eliminating IH completely and obtaining

Ipart. =AZ I [ A g 3 dzA dz A+ e1/2 dz] A
A

(27)d;part. Jf "Ak 'DC43 dA A ~L dXA· (A A
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Variation of Eq. (27) yields equations of motion which, by the use of

Eqs. (6), (19)-(21), can be shown to be identical to the BS equations of

motion, Eqs. (10). Equation (27) is the familiar "metric theory" action

principle describing the interaction of charged particles with the gravi-

tational field g¥v and the electromagnetic field Ad.

b. Electromagnetic Part of Lagrangian

It will now be shown that, to first order in h v, the electromagnetic

Lagrangian can also be put into metric form. Change variables from H

to an antisymmetric tensor F by
Pv

"~v(l I h 2
)
+ ~X (i + h)H F ~( 1 + -1 h + h F h 1 4. I)

2Fa hv] h% - 2FXh hphi + O(Fh3 )

Equation (28) is simply the result of an inversion of Eq. (8). Square

brackets around indicies denote antisymmetrization of indices (with the

usual normalization of a factor of ). Variation of Fcv in the new

Lagrangian presumably will yield the relation

F =A - A
TLv v l~L AV

(28)

(29)

Substitution of Eq. (28) into the electromagnetic portion of the action yields

1 l 1 

LEM ~ (4X) A|I2 H1HH [1 g(1 - 1 h) + hI]aV - A [ H q (-)l/2 d4x
M 2 a

= (hY 1 I n12 1[(( 2h) + 2FAP h 1 [Fl q + 2 h) + 2F~[ h]ITqavr_±

- Al VilP. FC(1 + 2 h) + 2F, [ 7ah |( )1/2 dXx (31)

= (4h') 1- (AC V I F [C.{] + 1 h) '2 v - h.](- /2 d

+ O(h2 ) (32)
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where r p
= 2 0~

( 1 - 2 h) + hi

If one now uses the inverse of Eq. (25), i.e.,

gCO = -4 hT + 2Khoz + O(h2
)

and

( g)/2 = ( )1/2 [1 + h(j - 4K)] + O(h
2

)

one finds Eq. (32) can be written as

(
1
EM ( ([ + F) F 9(_ g)=/2 Adlx + L (33)

EM = (4I)-1 (m [. l+'TP 
+

where

Lcorr (4)- f FPV(T Fg - A[ael]))Vr d4x = O(h
2

) (34a)

and

avy 1 h 2 Talvr - hIaIhvo + 3 Tahvah + 3h hA . (34b)

2
Thus LEM has universally coupled form at 0(h); at O(h ) deviations occur,

arising from the Lcorr term in Eq. (33). Variation of F in Eq. (33)

yields the desired relation between Fpv and A , i.e., Eq. (29). Completely

equivalent equations are obtained if Eq. (29) is now substituted into

Eq. (33), yielding

EM = - (16e)- IJ FoF gg IVg (- g)l/2 d4x + LCoR. (35a)

- _ (16ir)- FvFO(- _g)l/2 d4x + LCoRR. (35b)

The relation given in Eq. (29) is now understood to hold in Eqs. (35).

Since we now have constructed a second metric g04 (the "physical metric"),

indices on all quantities except the constituents of gCa (bC4y ho,' A )

henceforth will be raised and lowered with gcd. Equation (35), aside from

the O(h ) correction term, is recognized as the electromagnetic Lagrangian

for metric theories. Thus the BS theory is a metric theory at first order

but nonmetric at all higher orders (in h).
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c. Summary of Our New Representation

Our new representation of the BS theory is summarized succinctly in

Table I. In particular one sees that for uncharged particles the theory

is metric to all orders in h, with go0 playing the role of the "physical"

metric. When electromagnetic phenomena are included, and when one goes

beyond first order in h, the theory is nonmetric (cf. VCORR in Table I).

IV. THE POST-NEWTONIAN LIMIT OF THE THEORY

We now proceed to calculate the post-Newtonian (PN) limit of the theory.

The PN limit is a perturbation solution of the gravitational field equations

- expanding in the small quantities occurring in the solar system, e.g.,

2 2 2v - (macroscopic velocitieslof bodies) = O(e )

2
U - Newtonian gravitational potential = 0( 2 )

p/p _ (pressure)/(proper density of rest mass) = O(c
2

)

n - (internal energy density)/(rest mass density) = 0( ) .

We refer the reader to Ref. 5 for further details of the expansion scheme.

a. The Metric-Theory Approximation

Using Table I, we write the field equations as

G _TANG ( Iaetric '-CORR.

= '1 \ g- Oh \ vh =+ _h /

- _( etric j_ + CORR.

PV + (7v-g(l ) 1/2 ' hpv hv /CORR.
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where we have used the usual definition (as in metric theories)

v _ 2 8'Metric
------r -T ----- (37)
(_ g)l/2 IV

To PN order, the first term on the right-hand side of Eq. (36) is of order

2
First Term : (Total energy density) · e

while the second term is of order (see Table I)

2
Second Term e (Electromagnetic energy density) · e

Since the electromagnetic energy of a substance is typically smaller than

the total mass-energy by a factor < 10
-
, the second source term in Eq. (36)

can be neglected at PN order, by comparison with the first. Similarly, one

can make a metric-theory approximation for the response of matter to gravity.

4
For metric-theory (i.e., universally-coupled ) Lagrangians one always has

P v = 0 (38)
;v

when the matter field equations are satisfied, where the semicolan denotes

covariant differentiation with respect to the physical metric god. In the

BS case

T4v = ( oR h h° ) (39)
;v ~ 5hv

so again one can conclude that effects resulting from the deviation in the mat-

ter response equation from Eq. (38) will be < 10-
3

of PN effects. Thus for all

PN phenomena we can neglect ORR. and treat the BS theory as a metric theory.

b. From Point Particles to Perfect Fluid

In one of their original papers Belinfante and Swihart, when solving

their gravitational field equations with the sun as the external source,

11



use an ad hoc perfect-fluid stress energy-tensor for - v , rather than the

expression given in Eq. (5). Their T is precise enough to yield an ade-
Clv

quate treatment of the "three classical gravitation tests" but not precise

enough to adequately handle such effects as the effective gravitational

mass of gravitational energy (cf., "Nordtvedt effect" in Ref. 5). To

avoid such problems, and to ensure self-consistency of the theory when

dealing with gravitating sources in the solar system, we will build up the

fluid BS stress energy tensor, T 1 ', as an average over charged point par-

ticles and their electromagnetic fields [cf., Eq. (27) and Table I].

The kinetic-theory procedure for constructing a perfect fluid out of

interacting particles is the same in any metric theory as in general

relativity - and the same in general relativity as in special relativity

("equivalence principle"). By following that standard procedure and by

neglecting the resulting non-perfect fluid terms, we obtain the standard

stress energy tensor:

T '
v

= (E + p) uuV + pg (o)

Here up is a suitable macroscopic average of the microscopic particel 4-

velocities; e is the density of total mass-energy (rest mass plus kinetic

energy of particles plus electromagnetic energy) as measured in the macro-

scopic rest frame; and p is the similarly measured averaged pressure.

c. The Parametrized Post-Newtonian (PPN) Formalism

References 5 and 6 present a "parametrized post-Newtonian formalism"

in which the PN limit of every metric theory is summarized by the coeffi-

cients of various integral functions in its metric. These coefficients,

the so called PPN parameters, are obtained by the previously mentioned
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perturbation solution (PN limit) of the gravitational field equations. We

have constructed such a solution for our new mathematical representation

of the BS theory, using Eqs. (36), (40), and Table I. The details are

spelled out in Ref. 14. (Actually Ref. 14 is the presentation of an exact

gravitation theory closely related to the metric-theory approximation of

the BS theory.) We refer the reader to Ref. 14 and here quote only the

PPN parameters of the BS theory.

7 = Y + O(w) 2 = 0 a = O(w)

:3 = + O(w) 3 = a 2 = O(w)

1= 0 4 = O = 0 . (41)

Here ' and 1 are given implicitly in terms of a and f by

a = 1/(2 7 + 2) (42)

flO~ 72 -
f 10 0 + 6 y 5 - 7 Y - 8 y - 6 (43)

2(a + 1)(3 t + 5 - 4 r)2

and to obtain the correct Newtonian limit, one must require

16K2a - 4aK + a + 3f
a(a + 4f) 2 (44)

By O(w), we denote terms involving the cosmological boundary values of h
Pv

(see Ref. 14 for further details). Imposing Eq. (44) reduces the number of

arbitrary parameters to two (a and f for example); so we may regard y and

B as being arbitrary. For comparison, General Relativity has no arbitrary

parameters and its only nonzero parameters are y = B = 1.
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V. EXPERIMENTAL CONSEQUENCES AND TESTS OF THE THEORY

In his 1972 Varenna Lectures, Will8 summarizes, within the PPN frame-

work, the constraints which may be placed on a metric theory's parameters

by current solar system gravitation experiments. As has been indicated in

the previous section, the difference between the BS theory and a metric

3
theory for PPN-type experiments is less than one part in 103. For most

experiments the microscopic internal energies play a minor role - e.g.,

it is the macroscopic rotation of the earth which produces the macroscopic

Lens-Thirring precession of gyroscopes. For such experiments the BS theory

is effectively a metric theory to a much higher accuracy than indicated

above. In summary, so far as PN experiments are concerned, to the precision

of the technology of the 1970's, the BS theory is accurately summarized by

the values of its PPN parameters, Eqs. (41). We refer the reader to Ref. 8

for the experimental consequences of those values. Here we merely point

out a few salient features.

Perhaps the most important feature is this: If the O(w) terms in the

parameters are sufficiently small, and if the arbitrary parameters are chosen

so that 7 = 1 = 1, then the PN predictions of the metric-theory approximation

to BS are the same as the PN predictions of general relativity. In parti-

cular, the predictions for the "three classical tests" are the same as

Belinfante and Swihart themselves deduced by complicated calculations.

a. Preferred Frame-Effects

For the coordinate system in which ~ is Minkowskian, it is natural to

set the boundary values of h to zero when treating the solar system, as was

done originally by Belinfante and Swihart. However, the correct way to

determine the boundary values of h is through the solution of the cosmological

14



problem. If the solution produces nonzero cosmological boundary values of

h, then those values will effect certain of the PPN parameters [cf., O(w)

terms in Eqs. (41)]. In the case of the BS theory the presence of such

terms is a direct consequence of the presence of the "absolute gravitational

field" q (cf., Table I), and leads to various preferred-frame effects8

such as anamolous solid earth tides and contributions to the perihelion

shift of mercury. We refer the reader to Ref. 14 for a more complete dis-

cussion of the derivation of such effects in the BS theory.

b. Precession of Gyroscopes

We specifically mention this experimental test only because there seems

15
to be some confusion as to the prediction of the BS theory. Using for-

mulas from Ref. 8 and the BS PPN parameters, Eq. (41), one obtains for the

precession of the spin S'of a gyroscope orbiting the earth

dS
ds xs~ = Q X ~~~~(45)

where

- = -LENS-THIRRING 't 2GEODETIC (46a)

QL-T 8[4 y + 4 + O(w)][.05" of arc/year] (46b)

Si = i1 + 2 + o(w)][7" of arc/year] (46c)
G 3

Thus the results of the upcoming (to be launched before 1977) Everitt-

Fairbank1
6

gyroscope experiment can only place upper limits on the cos-

mological boundary volues of h [cf., O(w) terms in Eqs. (46)] for a

given choice of y.
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c. The Weak Equivalence Principle and Eotvos-Dicke Type Experiments

We conclude by considering the Edtvbs-Dicke (ED) type experiments,1 0'1 1

which test gravity so precisely that they fall outside of the PN realm of

precision. Braginsky's recent version of the ED experiment shows that

the difference in accelerations of test bodies of aluminum and platinum in

12
the gravitational field of the sun is smaller than one part in 10 2 Such

a result represents a strong validation of the weak equivalence principle4

(WEP). Consider the contribution of electromagnetic energy at order F2h
2

(see bottom of Table I) to the gravitational mass and acceleration a of a

test body:

1V electromagnetic energy h2]| E.M. energyU (47)

g total energy total mass

where h2 x U and g VU. For platinum, the following relation holds:

(E.M. energy/total mass) O 10-3

and the Newtonian potential due to the sun at the earth is

-8
U % 10 

Equation (47) and the above numerical estimates indicate that the ED experi-

ment can distinguish between the BS theory and its metric-theory approxima-

tion (cf., CORR. in Table I). All metric theories satisfy WEP identically.

The BS theory, however, as is shown in Ref. 9, predicts

| <>pt \-/Al 1 6 X 10-11 E.M. energy) U (48)
g total mass

in clear violation of the Dicke
1
0 and Braginsky

1 1
versions of the experiment.

The reader is referred to Ref. 9 for complete details as to the derivation of

16



Eq. (48) from considerations of particles interacting with gravity and

electromagnetism.
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TABLE I

A New Mathematical Representation of the Belinfante-Swihart Theory

1. Gravitational fields:

a. Absolute field ................... 1.....

b. Dynamical symmetric second rank tensor . . . . . . . . . . . . h

c. "Physical" metric . . . . . . . . . . . . . . . . . . ... g

2. Nongravitational variables:

a. Particle coordinates . ................... . A

b. Electromagnetic vector potential . . . . . . . . . . . . . . . A

c. Affine parameter of particle world lines .... . . . . . ..A

3. Gravitational field equations:

a. Flatness of R: Riemann (.) = 0

b. Field equations for h obtained by variation of hg in Lagrangian

below f

c. Decomposition equation for g: gOa = (1 - Kh)2 pAaL where we have

defined aa(S 21 h ) a, K is an arbitrary constant, h = 0 ho~,

and indices are raised and lowered on hog, A04 with nCo.

4. Influence of gravity on matter:

Equations for A, ZA' obtained by variation of those quantities in

Lagrangian

5. Lagrangian density:

a. G= G +; NG

b. =- (16X)-1 (a/ a h lt + fhh (- /G . la PCa Ci I a C) ~ )/

18



TABLE I (continued)

de ~adz V'a dz1 1
C NG [= A(S - Ao d

A
dAA + eA A d dA

4 ( x -z
A <A__A

(16 )
-1

FoF
°

, ( g) 1/2 += CTRS 0.- (161c)- IeCOR METRIC + ztCORR.

where CORR.' the "correction term" in the Lagrangian, which repre-

sents the amount by which the purely electromagnetic portion of the

Lagrangian fails to have metric form, satisfies

CRR = O(F2h2) [see Eqs. (34))
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